

Journal of Molecular Catalysis A: Chemical 142 (1999) 183–186

Reactivity of antimony mixed halides for the fluorination of tetrachlorethene (PCE) in liquid phase

S. Brunet *, C. Batiot, P. Moriceau, N. Thybaud

Université de Poitiers, Catalyse en chimie organique, UMR 6503 CNRS, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France

Received 4 May 1998; received in revised form 24 August 1998

Abstract

The active species for the liquid phase fluorination of tetrachloroethene (PCE) was produced by in situ reaction between HF and $SbCl_5$. By comparison with various commercial antimony mixed halides ($SbCl_4F$, $SbCl_3F_2$, $SbCl_2F_3$ and $SbClF_4$), the active species, produced in situ in our conditions, could be composed by $SbCl_4F$ or/and $SbCl_3F_2$ or a mixture of both. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Fluorination; Tetrachlorethene; Lewis acid; Antimony

1. Introduction

The catalytic fluorination in liquid phase of chloro compounds is currently carried out in liquid hydrogen fluorine in the presence of $SbCl_5$ [1–3]. This antimony halide is the starting material for the in situ formation of the catalyst.

For example, the preparation of $CHCl_2CClF_2$ and $CHCl_2CF_3$ involves the addition of HF on tetrachloroethene followed by a Cl/F exchange.

$$CCl_{2} = CCl_{2} + HF \rightarrow CHCl_{2} - CCl_{2}F$$

$$\stackrel{HF}{\rightarrow} CHCl_{2}CClF_{2} \stackrel{HF}{\rightarrow} CHCl_{2}CF_{3}$$

It has been suggested that the catalyst is an antimony mixed halide $SbCl_{5-x}F_x$, *n*HF. The

value of x depends naturally on the temperature $(1 \le x \le 4)$ and on the amount of HF [3–9]. It is possible in fact that a mixture of these halides is obtained. The reaction is accompanied by a reduction of Sb(V) into Sb(III). This side reaction is a major drawback because Sb(III) halides are unreactive and, unless an amount of Cl₂ is added continuously, the catalytic activity decreases drastically.

It was, therefore, interesting to use preprepared antimony mixed halides and to compare their activity, their selectivity towards the formation of $CF_2CICHCl_2$ and their stability.

2. Experimental

All the experiments were carried out in a 100 ml Teflon autoclave at 90°C in liquid HF at a

1381-1169/99/\$ - see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: \$1381-1169(98)00293-3

^{*} Corresponding author.

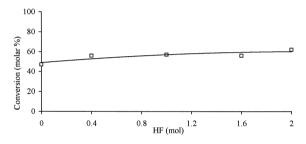


Fig. 1. Influence of the amount of HF for the in situ fluorination of SbCl₅ on the conversion of PCE. SbCl₅ = 0.027 mol; PCE = 0.25 mol, HF = 1.3 mol; $T = 90^{\circ}$ C, P = 10 bar N₂.

pressure of 10 bar. The catalyst was prepared, prior to reacting PCE with HF. For this, $SbCl_5$ (0.027 mol) was reacted with HF. After 1 h, the autoclave was cooled down and vented with dry dinitrogen in order to eliminate the HCl and the HF in excess. PCE (0.25 mol), and HF (1.3 mol) were then added. The reaction was carried out for 4 h at 90°C under 10 bar of dinitrogen. We checked that CF_3CHCl_2 was not vented under these conditions. The contents were quenched with 20 ml 6 M H₂SO₄. The organic phase was dried and analyzed by temperature programmed GC with a BP1 column (40 to 150°C). The products were identified by GC-MS.

Since the reaction was accompanied by a partial reduction of Sb(V) into Sb(III), the amounts of these two species were determined by titration of the aqueous phase. Both Sb species were measured by atomic adsorption. The amount of Sb(III) was determined by oxidation with a KMnO₄ solution. In some cases the residual amount of Cl⁻ was measured by titration with AgNO₃ in the presence of K₂CrO₄.

In another series of experiments, the catalyst $(SbCl_5 \text{ or antimony mixed halides})$, HF (1.3 mol) and PCE (0.25 mol) were added sequentially and the mixture was heated at 90°C. The reaction was carried out as mentioned above. The different antimony mixed halides $(SbFCl_4, SbCl_3F_2, SbCl_2F_3 \text{ and } SbClF_4)$ were purchased at the Ozarvi-Mahoning (an Elf Atochem North America, Subsidiary) with a purity > 99.5.

The transformation of CFCl₂CHCl₂ was also studied under the same conditions (90°C, 10 bar) with preprepared SbCl₅ during 4 h.

3. Results

The catalytic activity of SbCl₅ preprepared with various amounts of HF for the PCE transformation is reported in Fig. 1. No significant effect of the amount of HF on the conversion of PCE could be observed. However, a small increase of the selectivity towards $CHCl_2CCl_2$ and a small decrease of $CHCl_2CCl_2F$ and of other products down to 1 mol of HF could be observed (Fig. 2). Below this value, all the performances were constant. A large reduction of Sb(V) into Sb(III) can be noticed.

To identify the active species for the fluorination of PCE under our conditions, the reactivity of various commercial antimony mixed halides $(SbFCl_4, SbCl_3F_2, SbCl_2F_3 \text{ and }SbClF_4)$ was tested for the transformation of the PCE. The catalytic activity of these antimony mixed halides was compared in Table 1 to the in situ $SbCl_5$ preprepared with HF and to $SbCl_5$ without prefluorination. First, the prefluorination of $SbCl_5$ increases the total conversion and the selectivity towards $CF_2ClCHCl_2$. Similar conversion and selectivities are obtained with prefluorinated $SbCl_5$, $SbCl_4F$ and $SbCl_3F_2$. The great activity and selectivity towards fluorina-

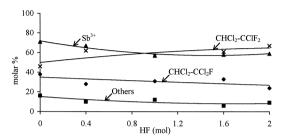


Fig. 2. Influence of the amount of HF in the in situ fluorination of $SbCl_5$ on the different selectivities and on the reduction of Sb(V). $SbCl_5 = 0.027$ mol; PCE = 0.25 mol, HF = 1.3 mol; $T = 90^{\circ}C$, P = 10 bar N₂. Others: CCl₃CCl₃, CCl₃CCl₂F, CCl₃CCl₂H, CCl₂FCCl₂F.

Table 1
Catalytic activity of different antimony mixed halides compared to SbCl ₅ (with and without prefluorination)

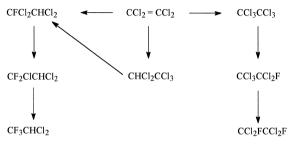
Catalyst	Conversion (molar %)	CHCl ₂ –CClF ₂ (molar %)	CHCl ₂ –CCl ₂ F (molar %)	Others ^a (molar %)	Sb ³⁺ (molar %)
SbCl ₅ without prefluorination	47	46	38	16	71
SbCl ₅ prefluorinated	57	57	31	12	60
SbCl ₄ F	58	54	33	13	72
SbCl ₃ F ₂	52	53	37	10	64
SbCl ₂ F ₃	70	67	25	8	60
SbClF ₄	70	66	26	8	40

 $T = 90^{\circ}$ C. P = 10 bar of N₂. Catalyst = 0.027 mol. PCE = 0.25 mol. HF = 1.2 mol. ^aCCl₃CCl₃, CCl₃CCl₂F, CCl₃CCl₂H, CCl₂FCCl₂F.

Table 2 Fluorination of CFCl₂CHCl₂ with SbCl₅

Catalyst	Sb(III) after	Conversion	CCl ₂ =CCl ₂	CF ₂ ClCHCl ₂	Others ^a
	reaction (molar %)	(molar %)	(molar %)	(molar %)	(molar %)
SbCl ₅	27	98	0.3	97.7	2

 $SbCl_5 = 0.0135 \text{ mol}, \text{HF} = 0.3 \text{ mol}, \text{CFCl}_2\text{CHCl}_2 = 0.0625 \text{ mol}, \text{HF} = 0.3 \text{ mol}, T = 90^{\circ}\text{C}, P = 10 \text{ bar N}_2.$ ^aCCl₃CCl₃, CCl₃CCl₂F, CCl₃CCl₂H, CCl₃FCCl₂F.

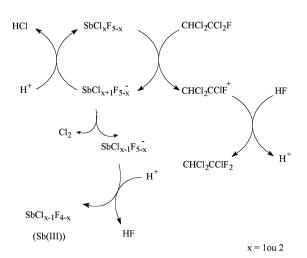

tion can be observed with the antimony mixed halides which contain a high degree of fluorination (SbCl₂F₃ and SbClF₄). In every case, a significant reduction of Sb(V) into Sb(III) occurs.

The reactivity of preprepared SbCl₅ under the same conditions ($T = 90^{\circ}$ C) was also tested for the CFCl₂CHCl₂ fluorination which involved only a Cl/F exchange (Table 2). After 4 h of reaction, the conversion of CFCl₂CHCl₂ is 98%, the main product being CF₂ClCHCl₂. A reduction of Sb(V) into Sb(III) can be also noticed.

4. Discussion

The fluorination of PCE with HF–SbCl₅ involved two reactions: the addition of HF and the Cl/F exchange to produce ClF_2CCHCl_2 and $Cl_2FCCHCl_2$. Other products resulting from the addition of Cl_2 and of HCl on $CCl_2=CCl_2$ were observed. HCl was formed 'in situ' during the Cl/F exchange and Cl_2 was produced by the reduction of Sb(V) into Sb(III). All the products are presented in the Scheme 1. Different mechanisms (electrophilic and nucleophilic) could be involved for both reactions (the addition of HF and the Cl/F exchange) [3,7,10,11]. But in our conditions, we could not separated these two mechanisms.

Under these conditions (90°C, 10 bar), the amount of HF during the fluorination of $SbCl_5$ did not really modify the selectivity towards fluorination and the conversion of PCE. The main product corresponds to the formation of CF₂ClCHCl₂. A significant selectivity towards fluorination was observed with a high degree of fluorination of antimony (SbCl₂F₃ and SbClF₄). This corresponds also to the decrease of the



Scheme 1. Transformation of PCE with HF-SbCl₅.

SbCl₅+HF \longrightarrow SbCl_xF_{5-x} \xrightarrow{HF} SbCl_xF_{6-x},H⁺

$$CCl_2=CCl_2+SbCl_xF_{6-x},H^+ \xrightarrow{CCl_2FCCl_2} CFCl_2CHCl_2+SbCl_xF_{5-x}$$

Scheme 2. Change of the catalyst during the reaction of addition of HF on PCE.

Scheme 3. Catalytic cycle of the reduction of Sb(V).

selectivity of the chlorinated products. The preprepared catalyst of $SbCl_5$ with HF has similar performances to the antimony mixed halides $SbCl_4F$ and $SbCl_3F_2$. It could be supposed that when HF reacts in situ with $SbCl_5$, a formation of these antimony mixed halides or a mixture occurs.

A significant reduction of Sb(V) into Sb(III) can be observed whatever the composition of catalyst. This reduction corresponds to a loss of catalyst activity since Sb(III) is inactive. It could result from a loss of chlorine from the antimony active species. This reduction can also be observed with the fluorination of $CHCl_2CFCl_2$ which involves only the Cl/F exchange. The

addition of HF to $CCl_2 = CCl_2$, which involved a electrophilic or a nucleophilic mechanism, does not seem to reduce Sb(V) (Scheme 2). The catalyst would be regenerated after the addition of HF, without having suffered any reduction. We suggest that the reduction of Sb(V) could occur as described in this cycle (Scheme 3). This catalytic cycle explains the formation of Cl_2 from antimony mixed halides. The addition of Cl_2 to $CCl_2 = CCl_2$ favours the Sb(V) reduction. It would be difficult to obtain a good fluorinating activity and a good selectivity towards fluorination without a reduction of Sb(V).

References

- [1] L.E. Manzer, Science 249 (1990) 31-35.
- [2] L.E. Manzer, Catalysis Today 13 (1992) 13-22.
- [3] A.E. Feiring, J. Fluorine Chem. 13 (1979) 7-18.
- [4] S. Brunet, C. Batiot, J. Barrault, M. Blanchard, J. Fluor. Chem. 59 (1992) 33–39.
- [5] S. Brunet, C. Batiot, J. Barrault, M. Blanchard, J.M. Coustard, J. Fluor. Chem. 63 (1993) 227–232.
- [6] C. Batiot, S. Brunet, J. Barrault, M. Blanchard, J. Chem. Soc. Chem. Commun. (1994) 867.
- [7] J. March, Advanced Organic Chemistry, 3rd edn., Wiley, New York, 1985, p. 680.
- [8] S. Brunet, C. Batiot, M. Calderon, J. Mol. Catal. A: Chem. 108 (1996) 11–14.
- [9] F.A. Dove, M.D Osman, J. Inorg. Nucl. Chem. Supplement (1976) 77–80.
- [10] L. Kolditz, S. Schultz, J. Fluorine Chem. 5 (1975) 141-150.
- [11] E. Santacesaria, M. Di Serrio, J. Fluor. Chem. 44 (1989) 87.